【编者按】
皮肤癌虽为全球最高发的癌症,但早期发现治愈率极高。本文通过权威数据揭示了及时筛查的关键价值——早期黑色素瘤五年生存率可达95%以上,而晚期则骤降至30%。随着人工智能技术在皮肤病变识别领域的突破性进展,深度学习算法正为癌症早筛提供全新可能。我们期待科技与医学的深度融合,能够为大众健康构筑更坚实的防线。

皮肤癌是全球最常见的癌症,每年新增病例超过所有其他癌症的总和。幸运的是,如果早期发现,大多数皮肤癌都是高度可治疗的。挑战在于在它们扩散之前发现它们。对于最危险的皮肤癌类型黑色素瘤,早期诊断的五年生存率超过95%,但一旦转移,生存率急剧下降至约30%(美国癌症协会,2024年)。
AI系统基于深度学习算法构建,这是一种机器学习形式,计算机通过处理大量图像来学习模式。对于皮肤癌检测,AI在包含数百万张皮肤病变照片的数据库上进行训练,这些照片由皮肤科医生标记并经活检确认。
当呈现新图像时,AI将病变与其学习到的模式进行比较,并计算恶性概率。在临床环境中,这个概率可以帮助皮肤科医生决定是否需要进行活检。

在皮肤科诊所中,AI被整合到数字皮肤镜系统中。当皮肤科医生拍摄痣的图像时,AI软件会立即分析并提供恶性风险评分。皮肤科医生然后将这些信息与他们自己的临床判断结合使用。
除了诊所,AI也进入了消费者健康领域。几款智能手机应用允许用户拍摄痣的照片并接收风险评估。虽然这些工具可以提高意识,但它们的可靠性各不相同。

AI在皮肤癌检测中为患者提供了几个潜在优势。
首先,它改善了早期检测,这是生存的最重要因素。通过分析肉眼看不见的细微模式,AI可以帮助在癌症扩散之前发现它们。其次,它减少了假阳性。许多患者接受了活检,结果却是良性的。通过使风险评估更加准确,AI减少了不必要的程序、疤痕和焦虑。
第三,它提供了更快的结果。患者可能立即获得评估结果,而不是等待数天的专家审查。最后,AI扩大了获得护理的机会。在皮肤科医生较少的地区,AI辅助筛查可以帮助非专科医生识别可疑病变,从而实现早期转诊和治疗。
尽管前景广阔,但AI也有局限性。

AI依赖于训练数据的质量和多样性。许多早期系统主要针对较浅肤色进行训练,导致在检测较深肤色类型的癌症时准确性较低(Adamson & Smith,2018年,《JAMA皮肤病学》)。
这引发了关于癌症护理公平性的担忧。目前正在努力创建更具包容性的数据集。